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Abstract
Rapidly proliferating cancer cells exhibit a high energy demand. However, their utilization of the glycolytic pathway is inef-
ficient, leading to a compensatory effect wherein cancer cells consume ten to twenty times more glucose than normal cells. In 
cases where glucose availability is limited due to a poorly perfused hypoxic microenvironment, cancer cells resort to alternative 
energy sources, including fructose. Certain tumors have been found to rely heavily on fructose, and fructose utilization contrib-
utes to pro-tumoral signaling and increased cancer risk. Over the past 70 years, dietary fructose intake has steadily increased, 
resulting in a rise in obesity and metabolic syndrome, both of which elevate cancer risk. In this paper, we present compelling 
evidence that highlights the role of fructose and the glucose transporter GLUT5 in promoting specific types of tumors. We 
summarize the existing evidence and pathways through which fructose contributes to cancer metabolism, particularly in cases 
where glucose availability is restricted. Furthermore, we propose a hypothesis that elucidates the regulation of the lipogenic 
phenotype by dietary fructose intake and cellular energy status. It is important to note that the effects of fructose are context-
dependent, with its tumor-promoting effects varying based on the energy status of the cell. We comprehensively analyze why 
targeting fructose uptake and fructolysis should be important for the management of some tumors and cancer prevention.
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Introduction
Glucose is classically considered the primary source of energy for 
cancer cells.1–5 Glucose uptake by malignant cells is more than 
ten times higher than in normal cells.6–9 The increased tumor glu-
cose uptake has led to the development of a very useful diagnostic 
method to visualize them: the 18F-2-fluoro-2-deoxyglucose posi-
tron emission tomography (PET).10

Paradoxically, despite the much higher glucose uptake in ma-
lignant cells, tumor glucose concentrations are much lower than 
in their normal counterparts.11,12 However, this apparent paradox 
has an explanation. There is no paradox: all the glucose taken up in 
tumors is swiftly used by the elevated metabolism of tumor cells, 

and thus very little remains in the tumor microenvironment. PET, 
mentioned above, uses the derivative of glucose, 18F-2-fluoro-
2-deoxyglucose, to detect tumor cells. The reason why PET shows 
high 18F-2-fluoro-2-deoxyglucose concentrations in tumors is that 
this derivative of 2-deoxyglucose blocks glycolysis, and there is no 
further degradation,13 allowing accumulation of an 18F-2-fluoro-
2-deoxyglucose for visualization.14

The increased glucose uptake of tumors, and the fact that the 
arrival of nutrients to a very hypoxic, poorly perfused tumor is 
limited, should prompt a question: how can cancer cells get all the 
necessary energy needed from glucose in a depleted environment 
that is difficult to replenish? Beyond glutamine as a proxy, this 
question has not yet been fully answered. One possibility is that 
fructose is an important energy source in at least some types of 
cancer, and there is evidence to support this concept.15–18 Howev-
er, evidence suggests that fructose uptake is significantly reduced 
in certain tumors, such as hepatocarcinoma, compared to normal 
liver tissue.19 So perhaps, there is a situation whereby in most tu-
mors, fructose is an important contributor to tumor growth and 
metabolism, but this is not the case in hepatomas.

Interestingly, the situation may vary in different types of tu-
mors. In prostate cancer, glucose is not the primary energy source, 
at least in the early stages.20 This explains why PET studies based 
on glucose uptake in prostate cancer have a low diagnostic val-
ue.21–23 Fructose is transported passively across cell membranes 
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by the glucose transporter GLUT5,24 whereas GLUT1 is selective 
for glucose.25 It has been shown that prostate high-grade intraepi-
thelial neoplasias show increased expression of GLUT5 and an ab-
sence of GLUT1, suggesting that early prostate malignancies use 
fructose rather than glucose as an energy source.26,27 It seems that 
the importance and uptake of fructose may vary from one type of 
malignancy to another.

Fructose metabolism
To understand the role of fructose in tumor malignancy, it is crucial 
to understand its metabolism compared to glucose. Fructose and 
glucose are metabolized differently. Both require transporters to 
cross the cell membrane, but glucose is taken up by glucose trans-
porters 1 to 4 (GLUT 1–4), while fructose requires the specific 
transporter GLUT5.28,29 The tissue uptake is also different for the 
two sugars. Almost all fructose is normally metabolized in the liver 
(80%), while glucose can be metabolized in any tissue.30 Another 
difference is in the first step of metabolism. Although the fructose 
molecule is very similar to glucose, it is not readily phosphorylated 
by hexokinases that phosphorylate glucose.

Cells that can metabolize fructose, therefore, use a ketohexoki-
nase called fructokinase. This is followed by a step with aldolase B 
(Fig. 1).31–34 The two steps in fructolysis begin with fructose phos-

phorylation by the enzyme fructokinase. ATP is used to donate the 
phosphate group producing fructose-1-phosphate. In the second 
step, another enzyme, aldolase B splits the molecule into two tri-
oses: dihydroxyacetone phosphate and glyceraldehyde. The other 
parts of the pathway are like glucose metabolism. Glyceraldehyde 
needs to be phosphorylated to continue its metabolism, and this is 
done by a triokinase-producing glyceraldehyde 3-phosphate. For 
glycolysis or oxidative metabolism pathways, dihydroxyacetone 
phosphate is changed to glyceraldehyde 3-phosphate by an isomer-
ase, and now the two glyceraldehyde 3-phosphate trioses can fol-
low the same steps (Fig. 1).

Figure 1 also shows the pathway leading to lipid synthesis from 
fructose. The pathway that leads to glycogen formation in the liver 
is not shown. The fact that fructose is mainly metabolized in the 
liver and normally only to a minor extent in other tissues means 
that when tumors use fructose as an energy source, these malignant 
tissues develop normal hepatic abilities.

There are notable differences in regulation between glycolytic 
enzymes and fructolytic ones. Firstly, the hexokinase enzymes (ex-
cept for the hexokinase IV, or glucokinase, expressed in the liver 
and kidney tubular cells, enterocytes, and pancreatic alpha- and 
beta-cells) are inhibited by increased concentrations of their prod-
uct, glucose-6-phosphate. Second, phosphofructokinase (PFK) 
is tightly regulated in glucose metabolism, and fructose, arrives 

Fig. 1. Fructose metabolism. Fructose is transported into the cell by GLUT5 and is phosphorylated by Fructokinase, also known as ketohexokinase. Aldolase 
B splits the molecule into two trioses: dihydroxyacetone phosphate and glyceraldehyde. Glyceraldehyde is phosphorylated by a triokinase-producing glycer-
aldehyde 3-phosphate. Dihydroxyacetone phosphate is changed to glyceraldehyde 3-phosphate by an isomerase. “1” represents oxidative metabolism, and 
“2” the glycolytic pathway. After the glyceraldehyde 3-phosphate stage is reached, glucose and fructose metabolism merge. However, fructose achieves this 
stage without passing through the phosphofructokinase enzymatic action as glucose metabolism does. Phosphofructokinase (PFK) is a metabolic checkpoint 
under insulin control. ATP, adenosine triphosphate; ADP adenosine diphosphate; PFK, phosphofructokinase.
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at the triose pool bypassing PFK without these restrictions.31,35 
Therefore, trioses produced from fructolysis can swiftly and unre-
strictedly generate a substrate for the pathways shown in Figure 1, 
including lipogenesis.

Another metabolic problem with fructolysis is caused by the 
rapid phosphorylation of fructose to fructose-1- phosphate. If it 
is not matched by downstream ATP production from fructose-
1-phosphate catabolism, this can lead to a drop in hepatic ATP 
stores and a rise in hepatic inorganic phosphorus concentration. 
This can cause acute hepatic dysfunctions due to hepatocytes’ 
energy deprivation, resulting in hypoglycemia and increased uric 
acid production. Additionally, fructose-1-phosphate can indirectly 
stimulate glucokinase by activation of a glucokinase-regulating 
protein. This effect may contribute to hypoglycemia development 
by decreasing hepatic glucose production (Fig 2).35,36

There are two possible pathways for fructose (Fig. 1) which 
leads us to a question: what makes uncontrolled fructolysis go one 
way or the other? A possible answer is that fructolysis goes toward 
energy production when energy requirements are not met. Other-
wise, it goes toward lipogenesis. This needs experimental confir-
mation and is further discussed in section “I” below.

Fructose-1-phosphate is an allosteric activator of pyruvate 
kinase, representing glycolysis’ last step.37 It also activates tran-
scription factors such as Sterol regulatory element binding pro-
tein-1 (SREBP1) and Carbohydrate Responsive Element Binding 
Protein(ChREBP). SREBP-1 is a transcription factor for genes that 
participate in glucose metabolism and lipogenesis.38 It is involved 
in the growth and progression of prostate cancer,39 promotes migra-
tion and invasion of breast cancer,40 regulates fatty acid synthase,41 
which is also pro-carcinogenic, promotes invasion and metastasis 
in hepatocarcinoma,42 among other pro-tumoral effects. Activation 
of SREBP-1 by fructose-1-phosphate may promote tumors as it 
has been shown that down-regulation/inhibition of SREBP-1 has 
antitumoral effects in glioblastoma43 and other tumors.44 The other 
transcription factor activated by fructose-1-phosphate, ChREBP, 
stimulates many glycolytic and lipogenic enzymes that are po-
tentially important in cancer progression.45 It contributes to cell 

proliferation46 and aerobic glycolysis.47,48 It also regulates the an-
drogen receptor transcription in prostate cancer.49

Fructose is obtained from the diet, and how dietary input is 
handled is quite interesting. Short-term elevations in the human 
diet of fructose increase hepatic glucose production. They also 
increase basal and postprandial blood triglyceride concentrations 
and intrahepatic fat content. These metabolic alterations may be 
early markers of metabolic dysfunction or adaptations to the spe-
cific two-step fructose metabolism.35 Dietary fructose is efficiently 
absorbed in the lower duodenum and jejunum and is processed 
in the liver. GLUT5 serves as the primary transporter responsible 
for fructose absorption. In mice, the deletion of GLUT5 leads to a 
significant reduction of 75% in fructose absorption in the jejunum, 
as well as a substantial decrease of 90% in serum fructose levels.50 
Absorbed fructose circulates in the serum and is delivered to the 
liver and to other tissues. Some tumors over-expressGLUT551–53 
and this is an indirect sign that these tumors have developed the 
ability to absorb fructose from the serum and are obtaining part of 
their energy from fructose.

Evidence of fructose as an important source of energy in cancer 
cells
There is abundant evidence that fructose can be an essential energy 
source for cancer cells. We divide this evidence into six general 
types. Firstly, many studies have demonstrated that the fructose 
transporter GLUT5 is upregulated in cancer cells. This was shown 
in breast cancer cells,18,54 where it was also demonstrated that 
GLUT5 is almost absent in normal cells.54 Other cancers in which 
GLUT5 was upregulated include clear cell renal carcinoma,53 
ovarian cancer tissues,52 acute myeloid leukemia cells,51 microglia 
of human gliomas,55 lung tumor tissue of patients with adenocarci-
noma,56 human colorectal cancer specimens,57 Philadelphia posi-
tive acute lymphoblastic cells,58 endothelial cells from hepatocel-
lular carcinoma,59 glioma cells60 and colorectal cancer cells.61 The 
exact mechanism by which GLUT5 expression is increased is not 
completely clear. There are some reports of factors that may be 
involved. Medina Villaamilet et al.62 found a correlation between 
HIF-1α (hypoxia-inducible factor 1-alpha, a transcription factor 
that regulates angiogenesis and tumor growth and metastasis) and 
GLUT5 expression. Another study showed that the inflammatory 
IL-6/STAT3 axis activates GLUT5 regulating the fructose metab-
olism in oral squamous cell carcinoma cells and prostate cancer 
cells. STAT3 transcription factor binds the GLUT5 gene’s pro-
moter region, enhancing its transcription.63 However, it is unclear 
if these are the only factors involved, and details of GLUT5 induc-
tion pathways remain to be elucidated. However, several studies 
have demonstrated that increased GLUT5 expression results in 
increased fructose uptake. This was shown in acute myeloid leu-
kemia cells,51 clear renal cell carcinomas53 and glioma cells.60 In 
several cases the increase in fructose uptake was correlated with 
factors such as malignant progression and differentiation.53 To 
summarize, many studies in different cancer types have shown 
that GLUT5 expression is elevated, and several other studies have 
confirmed these results in increased fructose uptake.

The second type of evidence supporting a fructose role in tu-
mors are several studies showing that knockdown or inhibition of 
GLUT5 has inhibitory effects on tumors’ cell growth, viability, 
migration, and proliferation. These studies were demonstrated in 
various cancer types and different circumstances. An example of a 
competitive inhibitor of fructose transport by GLUT5 is 2,5-anhy-
dro-D-mannitol, and administration of this compound could mark-
edly suppress clear cell renal cell carcinoma growth.64 Similarly, in 

Fig. 2. Increased uric acid production due to increased fructose catabo-
lism. AMP, adenosine monophosphate; ATP, adenosine triphosphate; IMP, 
inositol monophosphate.
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acute myeloid leukemic cells, pharmacological blockade of fruc-
tose uptake with the same compound weakened the malignant phe-
notype and increased cell sensitivity to chemotherapeutic drugs,51 
while in colon cancer cells, a different GLUT5 inhibitor N-.4-
(methylsulfonyl)-2-nitrophenyl-1,3-benzodioxol-5-amine, signifi-
cantly decreased viability of these cancer cells but had little effect 
on the viability of normal colon epithelium cells.57 Knockdown 
of GLUT5 may be a more specific method of reducing GLUT5 
activity, and several studies have shown that this has beneficial 
effects on preventing tumor cell growth and malignancy traits. For 
example, Jin et al.64 deleted the GLUT5 gene from clear cell renal 
cell carcinomas cells. Cell malignancy was attenuated, and apopto-
sis was activated. Similar results were shown with the knockdown 
of GLUT5 in glioma cells,60 ovarian cancer cells,52 and two types 
of human breast cancer cells, MCF-7 and MDA-MB-231 cells.65 
Very recently, Groenendyk et al.66 also demonstrated that CRIS-
PR/Cas9 mediated inactivation of the SLC2A5 (GLUT5) gene 
inhibited cancer cell proliferation and migration in vitro, as well 
as metastases in vivo in several different animal models. Moreo-
ver, SLC2A5 attenuated cells significantly altered mitochondrial 
architecture and localization, indicating an important role in direct-
ing mitochondrial function for cancer cell motility and migration. 
The study used MIA PaCa-2 cells, a highly metastatic pancreatic 
ductal adenocarcinoma cell line and HT-1080 human cells derived 
from connective tissue of a patient with fibrosarcoma. Overall, 
these types of studies demonstrate that inhibition or knockdown 
of GLUT5 affects several different types of cancer cells, having 
beneficial effects such as inhibiting tumor growth and survival. 
These studies confirm that induction of expression of the GLUT5 
gene in these cancers, has real and significant effects with regards 
to tumor progression.

A third line of evidence that supports the vital role of fructose 
as an energy source for tumors are the effects of high fructose in 
the “diet”of cells, animals, or humans. Several results show that in 
animal models, elevated dietary fructose enhances carcinogenesis. 
For example, a dietary treatment with fructose increased hepato-
carcinogenesis in a rat model treated with N-nitrosomorpholine.67 
The same group used a similar model to show that high dietary 
fructose enhanced nodules of atypical acinar nodule cells, which 
are precursors of pancreatic lesions.68 Elevated levels of fructose 
in the “diet” of cells could support breast cancer cell proliferation 
when glucose levels were reduced.18 In a separate breast cancer 
model, substituting the energy source in MDA-MB-468 breast 
cancer cells with fructose induced a more aggressive phenotype 
characterized by enhanced migration and invasion capabilities.16 
Effects of high fructose in the medium of cells were shown in sev-
eral other studies, including glioma cells, where it promoted tumor 
progression and GLUT5 expression.60 Another paper69 examined 
many different cell types and showed that cells chronically cul-
tured in fructose develop high fructose lysis ability. The SLC2A5 
(GLUT5 transporter) gene was specifically upregulated, as was 
fructose usage. Fructose elevated GLUT5 expression and stimu-
lated cell proliferation.

Elevated levels of fructose in animal diets have also been 
shown to enhance tumorigenesis in several animal models. This 
occurred in lung metastasis and mammary gland tumorigenesis70 
and a mouse model of hepatocarcinoma.71 Kuehm et al.72 also 
demonstrated that in melanoma tumors in the C57BL/6 mouse 
model of diet-induced obesity, dietary fructose promoted cytopro-
tection and resistance to immunotherapy. Mice with a high fruc-
tose diet had increased expression of the cytoprotective enzyme 
heme oxygenase-1, which shielded tumor cells from immune-me-

diated killing. The increase of this protein was recapitulated in hu-
man A375 melanoma cells exposed to fructose in culture. Another 
recent publication also showed that dietary fructose improves the 
survival of intestinal cells and increases villus length in several 
mouse models.73

The elevation of fructose in the diet of humans has been ana-
lyzed, mainly by examining the incidence of various tumors in 
populations or groups with high fructose input. For example, a 
study of over 80,000 women74 found an association between higher 
fructose intake in obese, sedentary women with increased pancre-
atic cancer risk. Another association was published by Larsson et 
al.,75 who found increased pancreatic cancer risk in obese women 
with high consumption of sweetened soft drinks (sweetened soft 
drinks contain a high level of fructose). Moreover, a different size-
able multiethnic cohort study showed an increased relative risk for 
pancreatic cancer in people with high fructose intake.76 Finally, a 
retrospective analysis of a large population, including ten cohorts, 
did not show an association between pancreatic cancer risk and 
intake of diets high in glycemic index, glycemic load, total car-
bohydrates, or sucrose. However, there was enhanced pancreatic 
cancer risk with high fructose diets.77 These studies support the 
concept that aside from all the animal studies and studies in culture 
described above, humans are also susceptible to elevated levels of 
fructose in their diet.

Here we also suggest that the levels of fructose updated in the 
“diet” can compensate for decreased or blocked glucose usage and 
stimulate glucose usage. Cancer cells have significantly elevated 
levels of glycolysis and high metabolic activity with subsequent 
high energy usage.78 As glucose is the often-used substrate of can-
cer cells, one would believe that blockage of glycolysis should be 
a useful anti-cancer strategy. 2-deoxyglucose blocks glucose me-
tabolism; however, it has failed in tests as an anti-cancer drug.79 
We suggest that the failure of anti-glycolytic approaches may be 
due to using fructose as an alternative energy source. Fructose me-
tabolism bypasses the glycolytic obstruction induced by 2-deoxy-
glucose. One example was a study demonstrating that fructose was 
an important fuel for lung adenocarcinoma when glucose levels 
were low.80 However, it is also interesting that fructose metabolism 
can stimulate the glycolytic pathway, which can stimulate cancer 
growth and metastasis.15 Thus, fructose can substitute for glucose 
where needed and stimulate glucose use if available, thus promot-
ing tumor progression.

A fourth line of evidence that supports the critical role of fruc-
tose in human cancer development is the clinical correlation that 
suggests that fructose metabolism is important in human tumor 
progression. For example, GLUT5 expression is elevated in hu-
man glioma tissues, and GLUT5 is correlated with glioma progres-
sion and poor survival in glioma patients.60 A similar correlation 
of GLUT5 levels with ovarian cancer tumor malignancy and pro-
gression-free survival has also been reported,52 GLUT5 was also 
upregulated in lung adenocarcinoma patients and correlated with 
poor prognosis.56 There is an almost 2.5-fold (p < 0.001) increase 
in GLUT5 mRNA expression level in colorectal cancer specimens 
compared with the healthy intestinal mucosa.57 GLUT5 was also 
overexpressed in a survey of 215 different human tumor samples.81 
Immunolocalization studies revealed that GLUT5 is highly ex-
pressed in vivo in human breast cancer but is absent in normal hu-
man breast tissue.54 Similar to the effect with GLUT5, ketohexoki-
nase, a key enzyme of fructose catabolism, is over-expressed in 
gliomas. This overexpression correlated with tumor progression 
and poor survival of glioma patients.82 Thus, in several different 
types of cancers, GLUT5 and another key enzyme of fructose me-
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tabolism, ketohexokinase, are upregulated and this elevation corre-
lates with detrimental effects on human health. This indicates that 
fructose metabolism is linked to cancer progression in humans. On 
its own, clinical correlates of expression with cancer progression 
are only indirect evidence at best, but when one considers the other 
data above such as knockdown and inhibitor studies in animals and 
cells described above, this provides good evidence for an impor-
tant role of fructose metabolism in tumor progression.

A fifth line of evidence supporting fructose’s role in cancer pro-
gression are the metabolic alterations or reprogramming that occur 
in many tumors that allow them to use fructose more efficiently. 
For example, colon cancer cells overexpress aldolase B when me-
tastasizing in the liver. Aldolase B enhances fructose metabolism. 
Restricting dietary fructose or targeting aldolase B decreased the 
growth of liver metastases without affecting the primary tumor.83 
Another enzyme that is altered is transketolase. Fructose can induce 
transketolase flux which promotes pancreatic cancer.84 Through 
increased fructose in dietary sugar, the lipoxygenase pathway in 
mice was increased, raising the risk of breast cancer development 
and metastases.70 In another study, it was shown that fructose, but 
not glucose, reprogrammed malignant human prostate cancer cells. 
It significantly altered mRNA expression of Hexokinase 2, type-C 
fructokinase, pyruvate kinase M2 and type-A lactate dehydroge-
nase. Various metabolic alterations improving fructose utilization 
also occurred in pancreatic stem cells,85 and prostate cancer cells 
using fructose as a main energy source when GLUT5 was over-
expressed.86 In tumor endothelial cells from hepatocellular carci-
noma, fructose treatment promoted proliferation, migration and 
angiogenesis. Fructose metabolism was elevated and both GLUT 
5 and ketohexokinase were upregulated. Knockdown or inhibition 
of these proteins abolished fructose-induced tumor angiogenesis 
and suppressed tumor growth.59 Demonstration of elevation of 
ketohexokinase in response to elevated dietary fructose has been 
shown several times. This also occurred in fructose fed mice87 
and in colon cancer cells, where GLUT5 expression inhibited ke-
tohexokinase degradation.61 In hepatocellular carcinoma, fructose 
promoted aggressiveness, and mice with a fructose enriched diet 
had appropriate metabolic reprogramming that increased energy, 
NADPH, and nucleotide production, allowing for increased tumor 
cell aggressiveness.88

A sixth line of evidence shows the relationship between fruc-
tose metabolism and tumor immunology. Kuehm et al.72 found 
that mice melanoma tumors in animals with a high-fructose diet 
were resistant to immunotherapy. They also found increased ex-
pression of heme oxygenase-1, a cytoprotective enzyme to which 
they attributed possible participation in the process. Interestingly, 
when exposed to fructose, A375 melanoma cells in culture showed 
high heme oxygenase-1 expression. This expression was causally 
linked to resistance to immune checkpoint inhibitors.

Based on the above-mentioned reports, there is evidence of a 
fructose-dependent pathway and a GLUT5-dependent pathway in 
cancer that stimulate tumorigenesis, as shown in Figure 3.

The above information makes it clear that fructose uptake and 
GLUT5, the fructose transporter, are important in at least some 

types of cancer and facilitate the growth and proliferation of cancer 
cells.

Fructose levels in the bloodstream
Notably, the peripheral plasma fructose concentration is relatively 
low (approximately 0.04 mM). After fructose ingestion, GLUT5 
expression is increased in the intestine.89,90 Fructose levels can 
increase 10-fold and return to normal after 2 hours fasting.91,92 
Fructose levels in the bloodstream have also been shown experi-
mentally to increase in response to fructose ingestion. This was 
shown in humans with acute fructose administration93 and with the 
administration of high-fructose corn syrup-sweetened soft drinks, 
where dramatic increases in fructose concentrations were shown 
with ingestion.94 It is also important to note that the fasting serum 
concentration of fructose is significantly higher in pancreatic can-
cer patients than in healthy individuals.95

Further details on the relationship of GLUT5 with cancer

Localization
GLUT5 is a fructose transporter that facilitates the diffusion of 
fructose in a concentration-dependent manner.96 It is highly ex-
pressed on the apical border of intestinal mucosa cells. It has mod-
est expression levels in other tissues such as adipocytes, kidneys, 
and skeletal muscles,97,98 while other tissues have no or minimal 
expression of GLUT5. As noted above, some tumors express 
GLUT5, while their corresponding healthy tissues do not express 
GLUT5. GLUT5 is the vehicle for the rapid absorption of fructose 
into cells, and the liver metabolizes approximately 70–80% of the 
absorbed fructose. Very little is known about GLUT5 regulation in 
tumors. It is unclear if the regulatory proteins that work on GLUT5 
in some tissues (Fig. 4) are operative in tumors. As always, sus-
picion is cast on several putative tumor drivers, but experimental 
evidence is lacking (Fig. 4).24,89–105

Regulation of expression
Tumors are highly hypoxic, and this may be the cause of GLUT5 
over-expression. Hypoxia in adipocytes was demonstrated to in-
crease GLUT5 levels.104 Additionally, hypoxia elevated levels of 
GLUT5 mRNA and protein in breast cancer cells. However, this 
depended on the type of breast cancer cell.105 Breast cancer sam-
ples from patients showed increased expression of all GLUTs and 
HIF-1α compared to control tissue. Triple-negative breast cancer 
tends to be more severe than other types. In triple-negative breast 
cancer, the samples showed greater GLUT1, GLUT5, and HIF-1α 
expression levels than ER-positive cases.105

Godoy et al.81 studied GLUT isoform expression in different be-
nign and malignant tumors. GLUT1 was the main isoform detected 
in tumor tissues. However, GLUT5 was extensively expressed in 
malignant tumors suggesting that fructose transport for use as an 
energy substrate was widespread. GLUT5 was detected in colon 
adenocarcinoma, ependymomas, plexus choroids papilloma, lung 
mesothelioma, liver carcinoma, lymphomas (only GLUT5), tes-

Fig. 3. Relationship among fructose metabolism, glut5, hexokinase and tumorigenesis. 
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tis seminoma, and uterus leiomyoma. GLUT5 was also detected 
in breast tumor cells and was more intense than normal cells, es-
pecially in invasive ductal carcinoma samples. GLUT2, a lower 
affinity fructose transporter, was similarly expressed in elevated 
amounts in tumor tissues when GLUT5 expression was elevated.

Downstream effects of GLUT5 expression
GLUT5 also plays an important role in lung cancer cell growth 
where the tumor seems to be fructose dependent. Chen et al.106 
found that by up-regulating GLUT5, these cells could use fruc-
tose as an alternative to glucose in vivo. Importantly, this fructose 
was mainly used for lipid synthesis. Deletion of the GLUT5 gene 
(SLC2A5) impaired proliferation, which could be restored by ad-
ministering fatty acids. They also showed that GLUT5-mediated 
fructose import was necessary to inhibit AMPK, thus allowing 
mTORC1 to promote lung cancer growth.

GLUT5 expression and chemoresistance
Several studies have shown that elevated expression of GLUT5 
induces resistance to chemotherapy or correlates with beneficial 
effects (from the tumor’s point of view). For example, Ramzy et 
al.107 demonstrated that GLUT5 was significantly upregulated in 
colorectal cancer cells and this induced drug resistance to chemo-
therapy treatments. A similar effect on chemotherapy resistance 
was also found by Shen et al. in colorectal cancer cells.61 A differ-
ent study on colorectal cancer cells108 suggested that regulation by 
AKT was responsible for elevated GLUT5 expression and resist-
ance to chemotherapy. Silencing either AKT or GLUT5 expression 
attenuated migration, invasive behavior, and inhibition of GLUT5 
activity with 2,5-anhydro-d-mannitol re-sensitized these cells to 

chemotherapeutic treatments. These results were more than a cor-
relation of behavior and, more specifically, confirmed the role of 
GLUT5. It is worth mentioning that another study109 also showed 
a connection between AKT, GLUT5, and cancer cell migration. In 
that study in lung cancer cells, overexpression of GLUT5 promot-
ed cell migration and AKT activation. Again, the use of GLUT5 
inhibitors blocked cell migration and AKT activation. There is 
clearly a link between GLUT5 and AKT and cancer cell behavior, 
including migration and chemoresistance.

Ketohexokinase (hepatic fructokinase)
As noted above, ketohexokinase is elevated in several types of 
cancer, and reduction or inhibition of the protein can inhibit the 
malignant phenotype. Here we describe some further details about 
this enzyme. Ketohexokinase (KHK) is the enzyme that converts 
fructose to fructose-1-phosphate110,111 using one molecule of ATP 
or GTP as a cofactor (Fig. 1). This occurs in the presence of K+ and 
Mg++ with no rate variations in enzyme activity within the pH range 
of 6 to 9. The reverse reaction occurs only at an acidic pH between 
5 and 6, which is usually impossible in the cell. There are two 
KHK isoforms, KHK-A and KHK-C. They are generated through 
mutually exclusive alternative splicing of KHK pre-RNAs. KHK-
C displays greater affinity for fructose compared with KHK-A, and 
KHK-C is produced primarily in the liver. This restricts fructose 
metabolism almost exclusively to this organ.112,113 Mirtschink et 
al.113 found that hypoxia can induce changes in splicing, switching 
KHK-A to KHK-C isoform in the myocardium and thus enforcing 
fructose metabolism. This has not been investigated in tumors, but 
we may speculate that something similar may happen. In addition 
to KHK canonical enzymatic function, it also has non-canonical 
activities as a protein kinase.114

Ketohexokinase acts as a nuclear kinase that has pro-tumoral 
effects such as:
1. Promoting tumor progression of glioma;82

2. Promoting progression of non-small lung cancer;115,116

3. Promoting pancreatic cancer growth by activating MAP Ki-
nases pathway;117

4. Driving hepatocellular carcinoma formation by a cMyc-induced 
splicing switch to isoform KHK-A;118

5. Promoting fructose-induced metastasis of breast cancer.87

In summary, ketohexokinase consists of two isoforms, and the 
relative amount of each varies. Aside from phosphorylating fruc-
tose and beginning the fructolytic pathway, the kinase has other 
pro-tumoral effects contributing to cancer growth and metastasis.

Interventions to inhibit fructose as a source of energy in 
cancer
Given that fructose can be an important source of energy for cancer 
and that fructose utilization can stimulate glycolysis and may have 
other pro-tumoral effects, it is important to discuss how to prevent 
these dangerous consequences of fructose metabolism. There are 
several possible approaches to prevent the use of fructose as an 
energy source in cancer. These include:
1. Dietary restriction of fructose.
2. Drugs such as 2,5-anhydro-D-mannitol (2,5-AM), a fructose 

analog with a high affinity for GLUT 5 that acts as a competi-
tive inhibitor.119

Dietary modifications for enhanced cancer therapy have been 
considered.120 Mostly, these have been concerned with treatments 
such as fasting and glucose restriction. Fasting has long been con-

Fig. 4. Regulatory mechanisms of GLUT5. These seem to work in the 
intestine and other tissues. a, dietary fructose elevates GLUT5 expres-
sion;89,99,100 b, insulin treatment can increase GLUT5 expression including 
elevated transcription and protein levels;101 c, Developmental reprogram-
ming and induction of rat GLUT5 requires glucocorticoid receptor translo-
cation to the nucleus;24 d, carbohydrate responsive element-binding pro-
tein is a transcription factor that regulates GLUT5 expression in response 
to carbohydrates;102 e, fully differentiated Caco-2/TC7 (human colon ad-
enocarcinoma) cells, thyroid hormone, and glucose increase GLUT5 mRNA 
abundance in dose-dependent manners;103 f, In human adipocytes hypox-
ia increases GLUT5 expression markedly.104 Some of these mechanisms 
may work in tumors such as hypoxia,105 but further studies are required to 
better characterize this in tumors.
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sidered in mice, where combining fasting cycles with chemother-
apy improves responsiveness. However, this is quite a harsh ther-
apy. Glucose has many tumorigenic roles, as discussed above, and 
glucose restriction has been tested and has value. However, cells 
seem to be able to rewire their metabolic programs in response, as 
noted above.120 Fructose restriction has not been as well studied, 
but some evidence has suggested that, at least in mouse models, it 
can have beneficial effects.120,121

As noted above, compounds such as 2,5-anhydro-D-mannitol 
can theoretically have beneficial effects, such as re-sensitizing 
cells to chemotherapeutic treatments.108 The idea of targeting fruc-
tose metabolism in tumors that over-express GLUT5 is not overly 
complicated because fructose-restricted diets are well tolerated, 
and the uptake inhibitor 2-5-anhydro-D-mannitol is a non-toxic 
compound. However, further study is needed.

Other compounds that have been reported to have GLUT5 in-
hibitory abilities are:
• MSNBA (N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodi-

oxol-5-amine);122

• Conjugates of 2,5-anhydro-mannitol also inhibit GLUT5.
• 6-O-allyl-d-fructofuranose;123

• 1,3-oxazolidin-2-thiones and 1,3-oxazolidin-2-ones;123

• Green tea and chamomile tea;124

• allylamine derivative of 2,5-anhydro-d-mannitol;119

• Flavonoids: epigallocatechingallate and apigenin but not querce-
tin;125

• Astragalin-6-glucoside;126

None have been clinically tested.

When to treat
Patients with tumors expressing high levels of GLUT5 might ben-
efit from both the above-mentioned treatment strategies. There is 
clear evidence of this in acute myeloid leukemia.51 In other tumors 
like breast, colon, and pancreatic carcinomas expressing GLUT5, 
treatments modulating fructose intake or uptake would probably 
delay growth and metastases, but this needs verification.

General Discussion
Glucose is the main energy source of cancer cells. However, tu-
mors are often poorly perfused and the concentration of nutrients 
such as glucose is often lower in tumors than in normal tissues. 
Thus, glucose depletion affects tumors’ ability to proliferate. Dif-
ferent cancer cell lines show different sensitivities to glucose de-
pletion.127 With the effects of glucose depletion, in certain tumors, 
fructose becomes a very important energy source and can even re-
place glucose as the main nutrient. Fructose consumption is associ-
ated with a more malignant phenotype with increased proliferation, 
invasion, and metastasis.128 However, in 2009, an epidemiological 
study could not confirm that high dietary fructose intake increased 
cancer risk.129 Nevertheless, other studies have shown some asso-
ciations between elevated fructose and cancer frequency, but this 
is not always true.130,131 Though these results are conflicting (see 
also below), they do not mean that fructose has no role in cancer 
development. At the clinical level, fructose indirectly participates 
in cancer through obesity and metabolic syndrome. At the molecu-
lar level, fructose has an important role in the development of a 
more aggressive cancer phenotype in some tumors.18,27

The importance of fructose in cancer seems to stem from three 
different roles:
1. As a source of energy;

2. Reprogramming of cellular metabolism;
3. Stimulating synthesis of fatty acids necessary for the lipogenic 

phenotype.
Here we review some of the more critical aspects of these three 

capabilities of fructose.

Fructose as a source of energy
High intake of dietary fructose is increasingly being considered a 
causal factor of obesity,132 metabolic syndrome,133–135 and indi-
rectly, insulin resistance.136 While studying metabolic syndrome, 
interesting clues were discovered on the role of fructose beyond 
its energetic function. Metabolic syndrome and insulin resistance 
increased the expression of interleukin-6,137 Akt, NF-kB,138 and 
TNFα via hepatic production. All these compounds have pro-
tumoral activity. Thus fructose, while promoting metabolic syn-
drome, obesity, and insulin, simultaneously increases the produc-
tion of compounds that promote tumorigenesis. These findings 
have not been mechanistically well characterized. Fructose sup-
plementation in the diet has been shown to impair signaling in 
insulin-sensitive tissues (Fig. 4).139

Whatever the cause, metabolic syndrome and obesity can in-
crease cancer risk. One study of 38,940 cases of cancer140 found 
that metabolic syndrome had an increased relative risk(RR) for 
hepatic (RR = 1.43), colorectal (RR = 1.25), and bladder (RR = 
1.10) cancers in men, and endometrial (RR = 1.64), pancreatic 
(RR = 1.58), postmenopausal breast (RR = 1.56), and rectal (RR 
= 1.52) cancers in women. Another prospective study of 90,000 
people beginning without cancer showed that in obese people, the 
risk of death from cancer was 52% (RR = 1.52) higher in men and 
62% (RR = 1.62) higher in women, compared with the non-obese 
population.141

It should be noted that dietary fructose intake has increased dra-
matically in the United States, and many authors consider that this 
is partly responsible for the obesity epidemic.102,142–148 However, 
other authors do not accept this as the cause of energy over-con-
sumption, independent of fructose.149,150

Fructose reprogramming cellular metabolism
Fructose can increase aerobic glycolysis (bypassing glycolytic re-
strictions and activating pyruvate kinase) and lipogenesis. In pros-
tate cancer, a lipogenic phenotype was found in many tumors.151 
De novo lipogenesis is a consequence of androgenic stimulation of 
SREBP.152 De novo lipogenesis is also one of the effects of fruc-
tose (Fig. 4). Prostate cancer patients treated with androgen depri-
vation can retain their lipogenic phenotype thanks to the activity of 
fructose metabolites as suggested by Carreño et al.153 Support for 
this concept came in one study that showed that adding fructose to 
the medium of cultured adipocytes increased lipogenesis.154 Fruc-
tose can also induce insulin resistance by activating the peroxi-
some proliferator-activated receptor γ coactivator-1 β (PGC-1β), 
which is a co-activator of SREBP-1. Knockdown of PGC-1β im-
proved insulin resistance.155

Fructose and the lipogenic phenotype
Fructose is implicated in the lipogenic phenotype, insulin resist-
ance, and metabolic syndrome.156 Increased fructose intake seems 
to be directly responsible for enhanced obesity and de novo lipo-
genesis.157 However, a panel of experts convened by The Center 
for Food, Nutrition, and Agriculture Policy was asked to examine 
the scientific literature on the relationship between high fructose 
intake and obesity. They concluded that high dietary fructose in-
take “does not appear to contribute to obesity any differently than 
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do other energy sources”.158 This makes us speculate that the lipo-
genic phenotype induced by fructose appears only if energy re-
quirements are fulfilled first.

Based on the above evidence, Figure 5 was constructed assum-
ing that the energy requirements were adequately fulfilled. If this 
were not the case, fructose would only be used to produce energy. 
The cause of the switch from energy production to lipoprotein pro-
duction is the energy balance. This is probably gauged by AMPK 
(AMP kinase). Activation of AMPK through a low ATP/AMP ratio 
(through the liver kinase B, LKB) inhibits ACC1 and ACC2 (Acetyl 
CoA Carboxylase) activity, inhibiting lipogenesis.159–161 The results 
of Woods et al.161 support this hypothesis. They demonstrated that 
chronic activation of AMPK through experimental mutation im-
pedes lipogenesis in the liver of mice with a high fructose diet. The 
chronic activation of AMPK produces a surplus of ATP (Fig. 5).

What we propose here, based on the published literature, is that 
fructose can be metabolized in two different cellular contexts:
1. Poor intracellular energy (low ATP, high AMP)
2. High intracellular energy (high ATP, low AMP).

In the first situation, fructose would mainly follow the fruc-
tolytic pathway, merging the glycolytic pathway at the level of 
glyceraldehydes-3-phosphate and producing energy. In the second 
situation, with full ATP coffers, fructose would mainly be used in 
the lipogenic pathway, as proposed in Figure 5.

Figure 5 hypothesizes, for the first time, a contextual-dependent 
metabolism for fructose. A consequence of this proposed mecha-
nism of action would be that administration of fructose under 
hypocaloric conditions would not induce the lipogenic pathway. 
Stansbie et al.162 showed that under fasting conditions, an overload 
of fructose generated double the amount of lactic acid compared 
to a non-fasted state. This suggests that fructose is mainly metabo-

lized under hypocaloric conditions in the fructolytic pathway.
Koo et al.163 have shown that high fructose intake induced the 

over-expression of certain genes, such as fructokinase and aldo-
lase B. This is logical regarding the need for these enzymes for 
fructolysis. However, other enzymes related to glycolysis were 
also over-expressed, like phosphofructokinase. Finally, there was 
a substantial over-expression of ChREBP. It is interesting to note 
that ChREBP mRNA and protein are significantly elevated in co-
lon cancer cells compared to the normal colon, and their expres-
sion is positively associated with advanced stages of cancer.45

Other effects of fructose
Two other effects of fructose also can stimulate carcinogenesis. 
The first is its production of reactive oxygen species. Fructose 
utilization generates 100-fold more reactive oxygen species than 
glucose, thus, creating oxidative stress that can lead to necroinfla-
mation,164 and oxidative stress can lead to carcinogenesis.165 The 
second effect is a temporary reduction in ATP levels. An overload 
of dietary fructose can produce a temporary ATP reduction due to 
the swift action of fructokinase-1 and the slow activity of aldolase 
B (Fig. 1).166–168 This can create an energy shortage that may tem-
porarily restrain the lipogenic pathway. Lipogenesis is also another 
path that can lead to ATP depletion.169

Fructose in diagnostics
Recently, a PET scanner has been developed to image GLUT5 in 
breast cancer using 6-deoxy-6-[18F] fluoro-D-fructose as a ra-
diotracer.170 This simplifies the diagnosis of fructose-dependent 
tumors. Another tracer that detects GLUT5 is [99mTc] glucarate, 
which was proposed for detecting fructose-consuming tumors in 
breast cancer.171

Fig. 5. Possible relationships between high fructose intake, insulin resistance, obesity, metabolic syndrome, lipogenic phenotype, and cancer. AMPK, 
adenosine monophosphate kinase; Fructose is a key figure that integrates these concepts. High fructose intake can lead to metabolic syndrome, obesity, a 
lipogenic phenotype, and insulin resistance, with downstream effects that may promote cancer. This mechanism is more evident if previous energy require-
ments are fulfilled. AMP, adenosine monophosphate; AMPK, adenosine monophosphate kinase; ATP, adenosine triphosphate.
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Conclusions
Glucose is the main energy source of cancer cells. Different cancer 
cell lines respond with considerable variations to glucose deple-
tion.127 In certain tumors fructose becomes a very important energy 
source and can even replace glucose as the main nutrient. Fructose 
consumption is associated with a more malignant phenotype with in-
creased proliferation, invasion, and metastasis. Some epidemiologi-
cal studies with large populations could not fully confirm that high 
dietary fructose intake increases cancer risk.129 However, this does 
not mean fructose has no role in cancer development. At the clinical 
level, fructose indirectly participates in cancer through obesity and 
metabolic syndrome. At the molecular level, fructose is essential in 
developing an aggressive cancer phenotype in some tumors.

Clinical implications
There are several instances whereby targeting GLUT5 may be a 
valuable approach for clinical treatments. One of these may be in 
the treatment of gliomas. Gliomas have a very poor prognosis, and 
no effective treatment has yet been developed. Therefore, finding 
a new way to address this disease would be a precious tool for 
fighting this disease. Evidence shows that, at least in the labora-
tory, targeting fructose metabolism could represent an interesting 
add-on to conventional treatments of gliomas.60,82 Clear cell renal 
carcinoma over-expresses GLUT5, which represents another case 
in which GLUT5 targeting may improve results.64

One of the objections to the importance of fructose as an al-
ternative energy source for cancer is the low levels of fructose in 
blood. This objection is invalid in colorectal cancer because fruc-
tose concentration is much higher in intestinal circulation. Moreo-
ver, as noted above, fructose concentrations can increase several 
folds in the bloodstream after ingestion and are increased in some 
types of cancer.91,92,95 Another point is that fructose can be pro-
duced endogenously from glucose through the polyol pathway, as 
found in diabetic patients. This pathway can convert up to 50% 
of glucose into fructose.172–174 The polyol pathway plays a role in 
cancer. The gene aldo-keto-reductase-1-member-B1, which codes 
for one of the two enzymes that participate in the polyol pathway, 
correlates with epithelial-mesenchymal transition in lung cancer 
patients and a colon cancer mouse model.175,176

Dietary effects
The effects of fructose in the diet deserve some more consideration. 
As noted above, the concept of restriction of dietary fructose to reduce 
cancer risk is controversial. Some researchers have suggested exces-
sive intake of dietary fructose is an increased risk factor for cancer 
or related syndromes that promote cancer,17,75–77,102,128,142–148,177,178 
while others could not confirm increased cancer risk in other popu-
lation studies, even examining the incidence of disease in the same 
types of tissue.77,129–131,149,150,179 Despite this controversy, it is clear 
that fructose is associated with factors that indirectly have strong 
influences on carcinogenesis, such as obesity154,180 metabolic 
stress,174 diabetes155,181 and pro-inflammatory effects.182 Section 
“C” above proves that fructose and its metabolism and transport 
can promote cancer cell growth and metastasis. Therefore, decreas-
ing dietary fructose intake should be considered as part of a can-
cer prevention scheme. It is unclear why population-based studies 
have such different and controversial results. This could be due to 
study group size, other parameters not controlled for, and sometimes 
due to differences in the types of cancer surveyed. As noted above 
(Fig. 5), context-dependent use of fructose may occur, and the use 
of fructose for metabolic activities that promote cancer may only 
occur in cases where high energy content is already present in cells. 

This could undoubtedly confuse the statistical analysis of human 
populations. Certain subfractions of the population may “respond” 
to fructose consumption more than others for this and possibly other 
reasons. A possibility is that GLUT5 expression levels may respond 
more to fructose in some parts of the population than others, pos-
sibly due to context-dependent effects. It may be that determining 
GLUT5 expression in individual patients could indicate a greater 
role of fructose in those individuals, allowing more personalized 
medical treatment, including fructose restriction. However, despite 
all the evidence on the importance of fructose metabolism in cancer, 
determining GLUT5 expression in cancer cells has not yet entered 
standard oncology practice. Targeting fructose metabolism is not 
part of mainstream treatments.

Related treatments, such as energy restriction, have been ex-
amined experimentally. Although successful in the laboratory, the 
energy restriction treatment as a stand-alone therapy with 2-deoxy-
glucose could not be introduced at the bedside.183 The reasons are 
high dose requirement, toxicity,184 and poor patient compliance. 
We also think that one possible explanation for this failure is the 
replacement of glucose with fructose as an energy source. As noted 
above, 2-deoxyglucose blocks glucose metabolism; however, it 
failed in tests as an anti-cancer drug.79 Fructose may be an alterna-
tive energy source when glucose levels are low.80 While elevated 
fructose metabolism by some cancer cells is not only an energetic 
matter, it is worth noting that 2-deoxyglucose can also decrease 
fructolysis.185,186 However, it is unclear whether this effect can be 
exploited in humans and if 2-deoxyglucose can inhibit the utiliza-
tion of both fructose and glucose in tumors.

We suggest it is a mistake to consider fructose as a lonely player 
in cancer. The entire team of fructose, GLUT5, and KHK must be 
viewed as a group of pro-cancer drivers. However, GLUT5 and 
KHK overexpression are the product of increased fructose pres-
ence. Furthermore, each of them can independently participate in 
tumor progression.

Benefits of fructose restriction
We think there are beneficial effects of restriction of fructose in the 
diet. Western diets and sweetened beverages contain very high lev-
els of fructose. Additionally, high fructose consumption parallels 
obesity incidence.187 High fructose in the diet also correlates with 
the progression of hepatocellular carcinoma.188 In mice predis-
posed to develop intestinal tumors, modest levels of high fructose 
corn syrup substantially increase tumor size and grade even in the 
absence of obesity.121 Overall, these results suggest that fructose 
could have an important effect on cancer patient’s diets. However, 
further studies are needed to demonstrate the beneficial effect of 
fructose restriction in humans in specific cancer types.187

Fructose consumption has experienced a significant surge since 
the 1960s, primarily attributed to its prevalence in high-fructose 
corn syrup found in soft drinks and processed foods. The relation-
ship between high fructose intake and certain diseases remains in-
completely understood. However, it is established that:
1. Increased fructose consumption can lead to weight gain and 

obesity through elevated lipogenesis and a surplus of calories;
2. This predisposes individuals to metabolic syndrome;
3. It also contributes to insulin resistance and diabetes;
4. Additionally, it can induce hepatic inflammation accompanied 

by heightened production of reactive oxygen species;
5. Ultimately, these factors collectively increase the risk of cancer.

From a molecular perspective, fructose serves as an energy 
source and a signaling molecule with pro-tumoral properties.

In light of this, we propose that the effects of fructose are con-
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tingent upon cellular energy availability, as illustrated in Figure 5 
and Figure 6. In this hypothesis, fructolysis under conditions of 
low energy availability would have minimal or no impact on tu-
mors. Conversely, fructose metabolism favors lipogenesis under 
sufficient energy availability, thereby promoting tumor growth.

This hypothesis could elucidate the discrepancies observed in 
population studies and the heightened cancer risk associated with 
obesity and metabolic syndrome.

Furthermore, certain tumors become highly dependent on fruc-
tose, displaying a more malignant phenotype. Consequently, this 
finding has practical implications: patients with overexpression of 
the glucose transporter GLUT5 may benefit from interventions tar-
geting fructose metabolism. Therefore, further research, including 
well-designed clinical trials utilizing personalized medicine, should 
be pursued to ascertain whether GLUT5 is overexpressed in pa-
tients’ tumors.
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